Критические Точки Распределения Пирсона Таблица Критических Значений • Таблица квантилей

Критические значения для проверки статистической гипотезы и как их вычислить в Python

Число степеней свободы df=(N-2) Уровень значимости для двустороннего критерия Пирсона
0,050 0,250 0,010 0,005 0,0005
0,369 0,430 0,050 0,549 0,6652

Например, для проверки гипотезы о равенстве среднего μ некоторому заданному значению μ 0 используется t -статистика если стандартное отклонение не известно ;.

Таблица критических значений пирсона

Табличные значения критерия Вилкоксона

Таблицы вероятностей, связанных со значениями критерия Манна-Уитни .

U

Если , то различие между выборками достоверно для, то есть нулевую гипотезу следует от­вергнуть.

Мнение эксперта
Знайка, главный эксперт в Цветочном городе
Если у вас возникли сложности, обращайтесь ко мне, и я помогу разобраться 🦉  
Задать вопрос эксперту
Проверка простых гипотез критерием хи-квадрат Пирсона в EXCEL. Примеры и описание Такой выбор критической области обеспечивает большую чувствительность критерия. А если у Вас остались вопросы, задайте их мне!

Критерий хи-квадрат Пирсона — Pearson s chi-squared test.

i Граница интервалов Ф(Zi) Ф(Zi+1) Pi= Ф(Zi+1)-Ф(Zi)
xi xi+1 Zi Zi+1
-1,14 -0,5 -0,3729 0,1271 6,36
-1,14 -0,52 -0,3729 -0,1985 0,1744 8,72
-0,52 0,11 -0,1985 0,0438 0,2423 12,12
0,11 0,73 0,0438 0,2673 0,2235 11,18
0,73 0,2673 0,5 0,2327 11,64

Критические значения верхнего хвоста таблицы распределения хи-квадрат дают критическое значение 11,070 при уровне значимости 95.

Критерий Пирсона для проверки гипотезы о виде закона распределения случайной величины. Критерий Колмогорова.

Критерием согласия называется критерий проверки гипотезы о предполагаемом законе неизвестного распределения. Это численная мера расхождения между эмпирическим и теоретическим распределением.

Основная задача.Дано эмпирическое распределение (выборка). Сделать предположение (выдвинуть гипотезу) о виде теоретического распределения и проверить выдвинутую гипотезу на заданном уровне значимости α.

1. Выбор гипотезыо виде теоретического распределения удобно делать с помощью полигонов или гистограмм частот. Сравнивают эмпирический полигон (или гистограмму) с известными законами распределения и выбирают наиболее подходящий.

В случае (а) выдвигается гипотеза о нормальном распределении, в случае (б) — гипотеза о равномерном распределении, в случае (в) — гипотеза о распределении Пуассона.

На практике чаще всего приходится встречаться с нормальным распределением, поэтому в наших задачах требуется проверить только гипотезу о нормальном распределении.

Достоинством критерия Пирсона является его универсальность: с его помощью можно проверять гипотезы о различных законах распределения.

Итак, для проверки нулевой гипотезы Н0: генеральная совокупность распределена нормально – нужно вычислить по выборке наблюдаемое значение критерия:

а по таблице критических точек распределения χ 2 найти критическую точку , используя известные значения α и k = s – 3. Если — нулевую гипотезу принимают, при ее отвергают.

По виду гистограммы можно сделать предположение о нормальном законе распределения изучаемого признака в генеральной совокупности.

i Граница интервалов Ф(Zi) Ф(Zi+1) Pi= Ф(Zi+1)-Ф(Zi)
xi xi+1 Zi Zi+1
-1,14 -0,5 -0,3729 0,1271 6,36
-1,14 -0,52 -0,3729 -0,1985 0,1744 8,72
-0,52 0,11 -0,1985 0,0438 0,2423 12,12
0,11 0,73 0,0438 0,2673 0,2235 11,18
0,73 0,2673 0,5 0,2327 11,64

б) по таблице критических точек распределения c 2 при заданном уровне значимости a=0,01 и числе степеней свободы k=m–3=5–3=2 находим критическую точку ; имеем .

Сравниваем c . . Следовательно, нет оснований отвергать гипотезу о нормальном законе распределения изучаемого признака генеральной совокупности. Т.е. расхождение между эмпирическими и теоретическими частотами незначимо (случайно). ◄

По таблице критических точек распределения , по заданному уровню значимости и числу степеней свободы определяем критическую точку .

В случае а) для значений , равных 34 и 35, нет оснований отвергать гипотезу о нормальном распределении, так как . А наибольшее среди этих значений .

2. Проверка гипотезы о равномерном распределении. При использовании критерия Пирсона для проверки гипотезы о равномерном распределении генеральной совокупности с предполагаемой плотностью вероятности

где а* и b* — оценки а и b. Действительно, для равномерного распределения М(Х) = , , откуда можно получить систему для определения а* и b*: , решением которой являются выражения (9).

Затем сравниваются наблюдаемое и критическое значение критерия Пирсона с учетом того, что число степеней свободы k = s – 2.

аналогично Наблюдаемое значение критерия Критическая точка χ 2 (0,05;4)=9,5; и гипотеза о показательном распределении отклоняется.

Так же вычисляются Наблюдаемое значение критерия Критическая точка Поскольку гипотеза о нормальном распределении генеральной совокупности принимается. ◄

Этот критерий применяется для проверки простой гипотезы Н0 о том, что независимые одинаково распределенные случайные величины Х1, Х2, …, Хп имеют заданную непрерывную функцию распределения F(x).

Найдем функцию эмпирического распределения Fn(x) и будем искать границы двусторонней критической области, определяемой условием

А.Н.Колмогоров доказал, что в случае справедливости гипотезы Н0 распределение статистики Dn не зависит от функции F(x), и при

— критерий Колмогорова, значения которого можно найти в соответствующих таблицах. Критическое значение критерия λп(α) вычисляется по заданному уровню значимости α как корень уравнения .

lektsia.com 2007 — 2022 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.084 с.) Главная | Обратная связь

Таблица критических значений пирсона

По виду гистограммы можно сделать предположение о нормальном законе распределения изучаемого признака в генеральной совокупности.

Что такое критическая ценность?

кудаPrэто расчет вероятности,Иксявляются наблюдениями от населения,critica_valueрассчитанное критическое значение, ивероятностьэто выбранная вероятность.

Критические значения используются в тестировании статистической значимости. Вероятность часто выражается как значение, обозначаемое как строчная греческая буква альфа (а), которая является перевернутой вероятностью.

Стандартные альфа-значения используются при расчете критических значений, выбираются по историческим причинам и постоянно используются по соображениям согласованности. Эти альфа-значения включают в себя:

Мнение эксперта
Знайка, главный эксперт в Цветочном городе
Если у вас возникли сложности, обращайтесь ко мне, и я помогу разобраться 🦉  
Задать вопрос эксперту
Статистики. Критерии. Критериальные случайные величины Пирсона, Стьюдента, Фишера-Снедекора — Экономика. Что если в контрольной группе результаты окажутся выше, чем в экспериментальной. А если у Вас остались вопросы, задайте их мне!
  • на основе выборки вычисляется значение статистики , которая соответствует типу проверяемой гипотезы. Например, для проверки гипотезы о равенстве среднего μ некоторому заданному значению μ 0 используется t-статистика (если стандартное отклонение не известно);
  • при условии истинности нулевой гипотезы , распределение этой статистики известно и может быть использовано для вычисления вероятностей (например, для t-статистики это распределение Стьюдента );
  • вычисленное на основе выборки значение статистики сравнивается с критическим для заданного уровня значимости значением ( α-квантилем );
  • нулевую гипотезу отвергают, если значение статистики больше критического (или если вероятность получить это значение статистики ( p-значение ) меньше уровня значимости , что является эквивалентным подходом).

Критерий Пирсона для проверки гипотезы о виде закона распределения случайной величины. Критерий Колмогорова.

Стиль общения Коэффициент корреляции Пирсона стиля общения с уровнем соперничества Деспотический 0,993 Коллегиальный -0,053 Либеральный -0,441.

Непрерывный случай

Примечание : Cлучайные величины в файле примера на листе Непрерывное сгенерированы с помощью формулы =НОРМ.СТ.ОБР(СЛЧИС()) . Поэтому, новые значения выборки генерируются при каждом пересчете листа.

Как видно из диаграммы, значения выборки довольно хорошо укладываются вдоль прямой. Однако, как и в дискретном случае для проверки гипотезы применим Критерий согласия Пирсона Х 2 .

Для этого разобьем диапазон изменения случайной величины на интервалы с шагом 0,5 стандартных отклонений . Вычислим наблюденные и теоретические частоты. Наблюденные частоты вычислим с помощью функции ЧАСТОТА() , а теоретические – с помощью функции НОРМ.СТ.РАСП() .

Примечание : Как и для дискретного случая , необходимо следить, чтобы выборка была достаточно большая, а в интервал попадало >5 значений.

На диаграмме выше видно, что значение статистики равно 8,19, что существенно выше критического значениянулевая гипотеза не отвергается.

В качестве примера также возьмем выборку из непрерывного равномерного распределения U(-3; 3). В этом случае, даже из графика очевидно, что нулевая гипотеза должна быть отклонена.

Мнение эксперта
Знайка, главный эксперт в Цветочном городе
Если у вас возникли сложности, обращайтесь ко мне, и я помогу разобраться 🦉  
Задать вопрос эксперту
Критические Точки Распределения Пирсона Таблица Критических Значений статью Критерий независимости хи-квадрат в MS EXCEL. А если у Вас остались вопросы, задайте их мне!

Байесовский метод

Количество степеней свободы равно количеству ячеек rc за вычетом уменьшения степеней свободы p , что уменьшает к r — 1 c — 1.

Статистики. Критерии. Критериальные случайные величины Пирсона, Стьюдента, Фишера-Снедекора

Определение 1. Статистической гипотезой называют гипотезу о виде неизвестного распределения или о параметрах известного распределения.

Наряду с данной гипотезой рассматривают и противоречащую ей гипотезу. В случае, когда выдвинутая гипотеза отвергается, обычно принимается противоречащая ей гипотеза.

Определение 2. Нулевой (основной) называют выдвинутую гипотезу H0. Конкурирующей (альтернативной) называют гипотезу H1, которая противоречит основной.

Пример. Нулевая гипотеза H0 : генеральная совокупность распределена по нормальному закону, тогда гипотеза H1 : генеральная совокупность не распределена по нормальному закону.

Пример. Нулевая гипотеза H0 : Мх = 20 ( т.е. математическое ожидание нормально распределённой величины равно 20), тогда гипотеза H1 может иметь вид H1: Мх 20.

По заданному уровню значимости α находят значение нижнего предела =

Чтобы проверить гипотезу о равенстве дисперсий, надо построить критическую область для критерия F. В качестве критической области принимаются два интервала: интервал больших значений критерия, удовлетворяющий неравенству F >F2 и интервал малых значений 0 < F < F1, причём критические точки занимают такое положение на оси критерия, чтобы удовлетворять следующим равенствам:

Такой выбор критической области обеспечивает большую чувствительность критерия. Оказывается, что достаточно определить правую критическую точку F2; последнее объясняется тем, что если величина

также имеет распределение Фишера (с k1 и k2 степенями свободы). Поэтому в таблицах табулируются только правые точки этого распределения.

Если полученное по выборке значение критерия выходит за правую критическую точку F2, гипотезу о равенстве дисперсий следует отбросить, в противном случае гипотеза о равенстве дисперсий не противоречит наблюдениям.

Пример. Оценивается валидность двух различных однотипных тестов. Подвергаются испытанию одна и та же группа с составе 20 человек. По данным тестирования были вычислены исправленные дисперсии, они оказались равными:

По найденным pi находим математические ожидания попаданий случайной величины Х в интервал Δхi. при n испытаниях, которые равны npi. В качестве меры расхождения выборочных m1, m2, ….ml и теоретических np1,np2,….npl характеристик вводится следующая величина:

Проверить с помощью критерия Пирсона и при уровне значимости α = 0,05 гипотезу о равномерном распределении числа звонков в психологическую службу в течение дня.

Пример. Имеются результаты опроса группы молодёжи, состоящей из 200 человек, о возрасте первого употреблении наркотиков. Результаты представлены в виде интервального вариационного ряда (Таблица 1.):

Требуется с помощью критерия Пирсона и при уровне значимости α = 0,05 оценить гипотезу о нормальном распределении возрастов начала употребления наркотиков, тем самым подтвердив гипотезу, что явление наркомании порождено множеством различных причин.

Полученная кривая имеет колоколообразную форму, поэтому есть основания к выдвижению гипотезы о нормальном распределении возрастов начала употребления наркотиков.

Подправленная дисперсия возрастов, впервые употребляющих наркотики, равна 4,077. Стандартное отклонение возрастов, впервые употребляющих наркотики, равно 2,019

6. Проверить, согласуется ли гипотеза о нормальном распределении генеральной совокупности с эмпирическим распределением выборки, используя критерий Пирсона при уровнях значимости 0,01; 0,05.

b — коэффициент регрессии, измеряющий среднее отношение отклонения результативного признака от его средней величины к отклонению факторного признака от его средней величины на одну единицу его измерения — вариация у, приходящаяся на единицу вариации х.

Уравнение (1) определяется по данным о значениях признаков х и у в изучаемой совокупности, состоящей из п единиц. Параметры уравнения а и b находятся методом наименьших квадратов (МНК).

По уравнению (2) обычно на практике вычисляется свободный член уравнения регрессии а. Параметр b вычисляется по преобразованной формуле, которую можно вывести, решая систему нормальных уравнений относительно b:

Так как знаменатель этого выражения есть не что иное, как дисперсия признака х, т. е. σ2, то можно записать формулу коэффициента регрессии в виде:

Da — частный определитель, получаемый в результате замены коэффициентов при а свободными членами из правой части системы уравнений;

Db — частный определитель, получаемый в результате замены коэффициентов при b свободными членами из правой части системы уравнений.

В отличие от коэффициента регрессии b коэффициент корреляции не зависит от принятых единиц измерения признаков, а стало быть, он сравним для любых признаков.

Эта формула используется при. анализе множественной корреляции. Умножив числитель и знаменатель последнего выражения на получим:

Рассмотрим фактический пример анализа корреляционной парной линии связи по данным 16 сельхозпредприятий о затратах на 10 гектар пашни и о урожайности с 1 гектара. (табл.1).

Сопоставляя знаки отклонений признаков x и у от средних величин, видим явное преобладание совпадающих по знакам пар отклонений: их 14 и только 2 пары несовпадающих знаков.

5. Найти выборочное уравнение линейной регрессии признака Y на признаке X и коэффициент их корреляции по экспериментальным данным из таблицы

Добавить комментарий

Ваш адрес email не будет опубликован.

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Adblock
detector