Троичная Система Счисления Таблица до 100 • См также править править код

4.19. в) А=9, B=4, C=5, D=3, F=1, L=0, M=7, N=8; г) A=3, B=6, C=2, D=5, E=9, F=7, G=1, H=0, I=4, J=8; д) A=9, B=3, C=4, D=2, E=1, F=8, G=0, H=7, I=6.

4.15. Упражнения

Десятичная система −3 −2 −1 0 1 2 3 4 5 6 7 8 9
Троичная несимметричная −10 −2 −1 0 1 2 10 11 12 20 21 22 100
Троичная симметричная 10 11 1 0 1 11 10 11 111 110 111 101 100

при ak из троичного множества a= и b=3 в сумме будут целые и удвоенные степени 3, система счисления становится обычной несимметричной троичной системой счисления, ak удовлетворяют неравенству 0k<=(b-1)<b, т.е. 0k

Троичная система счисления — Традиция

а) 10111012 и 11101112; д) 378 и 758; и) A16 и F16;
б) 1011,1012 и 101,0112; е) 1658 и 378; к) 1916 и C16;
в) 10112, 112 и 111,12; ж) 7,58 и 14,68; л) A,B16 и E,F16;
г) 10112 , 11,12 и 1112; з) 68, 178 и 78; м) E16, 916 и F16.

при ak из троичного множества a= и b=3 в сумме будут целые и удвоенные степени 3, система счисления становится обычной несимметричной троичной системой счисления, ak удовлетворяют неравенству 0k<=(b-1)<b, т.е. 0k

Системы счисления

В соответствии 2. сохраняются числовые значения 0 и 1.

Десятичная система -3 -2 -1 0 1 2 3 4 5 6 7 8 9
Троичная несимметричная -10 -2 -1 0 1 2 10 11 12 20 21 22 100
Троичная симметричная 10 11 1 0 1 11 10 11 111 110 111 101 100

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.