Таблица Деления в Восьмеричной Системе Счисления •

Пример 11. Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

Перевод чисел из одной системы счисления в другую онлайн

Таблица 1
Система счисления
10 2 8 16
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Системы счисления. Перевод из одной системы в другую.

2) Далее умножаем каждую цифру на основание системы счисления, в которой находится число, возведенное в соответствующую «подписанную» степень (помним, что любое число в нулевой степени — это единица): В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 — D.

Мнение эксперта
Знайка, главный эксперт в Цветочном городе
Если у вас возникли сложности, обращайтесь ко мне, и я помогу разобраться 🦉  
Задать вопрос эксперту
Перевод чисел из десятичной системы счисления в другую систему счисления Перевод смешаных десятичных чисел в любую другую систему счисления. Для того, чтобы научиться переводить числа из любой другой системы в десятичную, проанализируем привычную нам запись десятичного числа.
Например, десятичное число 325 – это 5 единиц, 2 десятка и 3 сотни, т.е.
Пример 11. Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

Что для Вас важнее при выборе обуви?
УдобствоКрасота

Перевод чисел из одной системы счисления в другую

0 0 0 0
1 1 1 1
2 10 2 2
3 11 10 3
4 100 11 4
5 101 12 10
6 110 20 11
7 111 21 12
8 1000 22 13
9 1001 100 14
10 1010 101 20
11 1011 102 21
12 1100 110 22
13 1101 111 23
14 1110 112 24
15 1111 120 30

Перевод чисел из двоичной системы счисления в восьмеричную.

2) Далее умножаем каждую цифру на основание системы счисления, в которой находится число, возведенное в соответствующую «подписанную» степень (помним, что любое число в нулевой степени — это единица): Следовательно наше шестнадцатеричное число — это 4CD9.

Мнение эксперта
Знайка, главный эксперт в Цветочном городе
Если у вас возникли сложности, обращайтесь ко мне, и я помогу разобраться 🦉  
Задать вопрос эксперту
Непозиционные системы счисления. Перевод смешаных десятичных чисел в любую другую систему счисления. Для преобразования двоичного числа в число с основанием «степень двойки» необходимо двоичную последовательность разбить на группы по количеству цифр равному степени справа налево и каждую группу заменить соответствующей цифрой новой системы счисления.
Каждая позиционная система счисления имеет свое основание. В качестве основания выбирается натуральное число, большее или равное двум. Оно равно количеству цифр, используемых в данной системе счисления.

Перевод правильных десятичных дробей в любую другую систему счисления.

10 с/с 2 с/с 8 с/с 16 с/с
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Adblock
detector